Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations

نویسندگان

  • Ouliang Chang
  • S. Peter Gary
  • Joseph Wang
چکیده

[1] Three-dimensional particle-in-cell (PIC) simulations of whistler turbulence at three different initial values of ˇe are carried out on a collisionless, homogeneous, magnetized plasma model. The simulations begin with an initial ensemble of relatively long-wavelength whistler modes and follow the temporal evolution of the fluctuations as wave-wave interactions lead to a forward cascade into a broadband, turbulent spectrum at shorter wavelengths with a wave vector anisotropy in the sense of k? > kk. Here ? and k denote directions perpendicular and parallel to the background magnetic field, respectively. In addition, wave-particle interactions lead to fluctuating field dissipation and electron heating with a temperature anisotropy in the sense of Tk > T?. At early times, the wave-wave cascade dominates energy transport, whereas wave-particle Landau damping dominates at late simulation times. Larger values of ˇe correspond to a faster forward cascade in wave number and to a faster rate of electron heating, as well as to a less anisotropic wave vector distribution and to a less anisotropic electron velocity distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whistler turbulence forward cascade: Three‐dimensional particle‐in‐cell simulations

[1] The first fully three‐dimensional particle‐in‐cell (PIC) simulation of whistler turbulence in a magnetized, homogeneous, collisionless plasma has been carried out. An initial relatively isotropic spectrum of long‐wavelength whistlers is imposed upon the system, with an initial electron b = 0.10. As in previous two‐dimensional simulations of whistler turbulence, the three‐dimensional system ...

متن کامل

Whistler Wave Cascades in Solar Wind Plasma

Nonlinear three dimensional, time dependent, fluid simulations of whistler wave turbulence are performed to investigate role of whistler waves in solar wind plasma turbulence in which characteristic turbulent fluctuations are characterized typically by the frequency and length scales that are respectively bigger than ion gyro frequency and smaller than ion gyro radius. The electron inertial len...

متن کامل

Bidirectional energy cascades and the origin of kinetic Alfvénic and whistler turbulence in the solar wind.

The observed steep kinetic scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quiet time suggest them as a possible source of free energy to drive kinetic turbulence. Using particle-in-cell simulations, we explore how the free energy released by an electron two-stream instability drives Weibel-l...

متن کامل

Gyrokinetic turbulence simulations with kinetic electrons*

Gyrokinetic turbulence simulations are presented with full drift-kinetic electron dynamics including both trapped and passing particle effects. This is made possible by using a generalization of the split-weight scheme �I. Manuilskiy and W. W. Lee, Phys. Plasmas 7, 1381 �2000�� that allows for a variable adiabatic part, as well as use of the parallel canonical momentum formulation. Linear simul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013